Operadores de estado arbitrários legados

Observação

A Databricks recomenda o uso de transformWithState para criar aplicativos personalizados com estado. Consulte Criar um aplicativo personalizado com estado.

Este artigo contém informações para recursos que suportam mapGroupsWithState, e flatMapGroupsWithState. Para obter mais detalhes sobre esses operadores, consulte o link.

Especifique o estado inicial para mapGroupsWithState

É possível especificar um estado inicial definido pelo usuário para o processamento stateful da transmissão estruturada usando flatMapGroupsWithStateou mapGroupsWithState. Isso permite que o senhor evite o reprocessamento de dados ao iniciar uma transmissão stateful sem um ponto de verificação válido.

def mapGroupsWithState[S: Encoder, U: Encoder](
    timeoutConf: GroupStateTimeout,
    initialState: KeyValueGroupedDataset[K, S])(
    func: (K, Iterator[V], GroupState[S]) => U): Dataset[U]

def flatMapGroupsWithState[S: Encoder, U: Encoder](
    outputMode: OutputMode,
    timeoutConf: GroupStateTimeout,
    initialState: KeyValueGroupedDataset[K, S])(
    func: (K, Iterator[V], GroupState[S]) => Iterator[U])

Exemplo de caso de uso que especifica um estado inicial para o operador flatMapGroupsWithState:

val fruitCountFunc =(key: String, values: Iterator[String], state: GroupState[RunningCount]) => {
  val count = state.getOption.map(_.count).getOrElse(0L) + valList.size
  state.update(new RunningCount(count))
  Iterator((key, count.toString))
}

val fruitCountInitialDS: Dataset[(String, RunningCount)] = Seq(
  ("apple", new RunningCount(1)),
  ("orange", new RunningCount(2)),
  ("mango", new RunningCount(5)),
).toDS()

val fruitCountInitial = initialState.groupByKey(x => x._1).mapValues(_._2)

fruitStream
  .groupByKey(x => x)
  .flatMapGroupsWithState(Update, GroupStateTimeout.NoTimeout, fruitCountInitial)(fruitCountFunc)

Exemplo de caso de uso que especifica um estado inicial para o operador mapGroupsWithState:

val fruitCountFunc =(key: String, values: Iterator[String], state: GroupState[RunningCount]) => {
  val count = state.getOption.map(_.count).getOrElse(0L) + valList.size
  state.update(new RunningCount(count))
  (key, count.toString)
}

val fruitCountInitialDS: Dataset[(String, RunningCount)] = Seq(
  ("apple", new RunningCount(1)),
  ("orange", new RunningCount(2)),
  ("mango", new RunningCount(5)),
).toDS()

val fruitCountInitial = initialState.groupByKey(x => x._1).mapValues(_._2)

fruitStream
  .groupByKey(x => x)
  .mapGroupsWithState(GroupStateTimeout.NoTimeout, fruitCountInitial)(fruitCountFunc)

Teste a função de atualização mapGroupsWithState

A API TestGroupState permite que o senhor teste a função de atualização de estado usada para Dataset.groupByKey(...).mapGroupsWithState(...) e Dataset.groupByKey(...).flatMapGroupsWithState(...).

A função de atualização de estado usa o estado anterior como entrada usando um objeto do tipo GroupState. Consulte a documentação de referência do Apache Spark GroupState. Por exemplo:

import org.apache.spark.sql.streaming._
import org.apache.spark.api.java.Optional

test("flatMapGroupsWithState's state update function") {
  var prevState = TestGroupState.create[UserStatus](
    optionalState = Optional.empty[UserStatus],
    timeoutConf = GroupStateTimeout.EventTimeTimeout,
    batchProcessingTimeMs = 1L,
    eventTimeWatermarkMs = Optional.of(1L),
    hasTimedOut = false)

  val userId: String = ...
  val actions: Iterator[UserAction] = ...

  assert(!prevState.hasUpdated)

  updateState(userId, actions, prevState)

  assert(prevState.hasUpdated)
}